Group 28
Owen, Russ, Gabrielle, Marcello
Pre. Renewed Relational Schema

Relations

Entites:
Potato(p__id, colour, quality, rotten)

Leprechaun(l_id, in_ training, first_name, last_name, birthday, fatigue, s_id) -
s_id is a foreign key referencing the SensitivityTraining entity

RainbowRegion(region_ name)

Stand(coordinates, golden_stock, regular_stock, 1 id) - 1_id is a foreign key
referencing the FarmstandClerk entity

Sensitivity Training(s_id, date, time)

Customer(c_id, credit_card number, credit_card_expiry, first_name,
last_ name)

DeliveryOrder(d_ id, regular_quantity, golden_quantity, ¢_id, 1 id) - ¢_id is a

foreign key referencing the Customer entity - 1_id is a foreign key referencing
the PotatoCourier entity

Weak Entities:

Rainbow(r_id, region name, regular quantity, golden quantity, rot-
ten__quantity) - region_ name is a foreign key referencing the RainbowRegion
entity

IS-A Entities:

RainbowHunter(1_id, gold_level, hit_rate) - 1_id is a foreign key referencing
the Leprechaun entity

PotatoDigger(1_id, latest_ yield, lifetime_haul) - 1_id is a foreign key referencing
the Leprechaun entity

FarmstandClerk(l_id, potatoes_sold) - 1_id is a foreign key referencing the
Leprechaun entity

PotatoCourier(l_id) - 1_id is a foreign key referencing the Leprechaun entity

Relationships:

RainbowHunting(l_id, r_id, region_name) - 1_id is a foreign key referencing
the RainbowHunter entity - r_id is a foreign key referencing the Rainbow entity
- region_ name is a foreign key referencing the RainbowRegion entity

PotatoDigging(p_id, 1_id) - p_id is a foreign key referencing the Potato entity -
1_id is a foreign key referencing the PotatoDigger entity

TravellingOnRainbow(1_id, r_id, region_name) - 1_id is a foreign key referencing
the Leprechaun entity - r_id is a foreign key referencing the Rainbow entity -
region_ name is a foreign key referencing the RainbowRegion entity

Purchased(p__id, c_id, cost) - p_id is a foreign key referencing the Potato entity
- c_id is a foreign key referencing the Customer entity

Stocked(p_id, coordinates) - p_id is a foreign key referencing the Potato entity
- coordinates is a foreign key referencing the Stand entity

AdjacentTo(region_name, region_name) - region_name is a foreign key refer-
encing the RainbowRegion entity

Near(r_id, region_name, coordinates) - r_id is a foreign key referencing the
Rainbow entity - region_ name is a foreign key referencing the RainbowRegion
entity - coordinates is a foreign key referencing the Stand entity

CanWorkIn(l_id, region_name) - 1_id is a foreign key referencing the Leprechaun
entity - region_ name is a foreign key referencing the RainbowRegion entity

There are no relations that can be combined without introducing redundancy.

I. Pending Constraints

Within “AdjacentTo” relationship table:

Two tuples carrying the same meaning can exist within “AdjecentTo” table
(e.g., (North America, Latin America) and (Latin America, North America) are
different tuples, but has the same meaning). This may lead to some duplicates
in the results of some queries.

Within tables describing working Leprechauns:

Leprechauns who are currently in training or are too tired to work can be erro-
neously added to tables such as “RainbowHunting”, “PotatoDigging”, “Stand”,
and “TravellingOnRainbow”. This requires checking for Leprechauns’ tiredness

attribute and “in_ training” flag.

Within tables describing Leprechauns’ professions:

Leprechauns can be added to two or more profession tables (e.g., “Rain-
bowHunter”, “PotatoDigger”). This requires checking for duplicate Leprechaun
IDs across multiple tables — possibly upon assigning a job to a Leprechaun
— which is impossible to do in the database code. Also, if ever a Leprechaun
were to be assigned to two or more professions, that Leprechaun can undergo
those jobs at the very same time, and consequently /possibly work in different
locations.

Within “Stocked” relationship table:

There are two ways to describe, in the database server, a single potato that is
not stocked anywhere: (1) either that potato is not described anywhere in the
“Stocked” relationship table, (2) or that potato has a record in the “Stocked”
table, but does not refer to any “Stand” entity. Enforcing a “Stocked” tuple to
be created alongside the creation of a “Potato” record brings more consistency.

Within tables describing Leprechauns’ use of Rainbows:

There are no database-level constraints on who can use a certain, busy Rainbow
or how many workers can use it. Certain groups of working Leprechauns should
prevent some other Leprechauns with different jobs to use the same Rainbow
(e.g., Potato diggers and couriers cannot use a rainbow simultaneously). Infinitely
many Leprechaun workers can also be added to a single Rainbow at the database
level.

II. SQL Queries

Queryl
Description of what information the query returns:

This Query will select all the Potato Diggers who are not anywhere beyond mild
fatigue, so they can work in the grueling conditions in Lucky Charm Chasm.
They must of course, be allowed to work in Lucky Charm Chasm as well. In
addition we want only the most productive Potato Diggers, so we will select only
The diggers who have a higher-than-average lifetime haul.

The SQL Query in plaintext:

WITH AvgLifetimeHaul AS (SELECT AVG(pd.lifetime haul) AS
avg_lifetime_haul FROM PotatoDigger pd JOIN Leprechaun 1 ON pd.l_id =
1.1_id WHERE l.fatigue != ‘exhausted’” AND Lfatigue != ‘extreme’), Quali-
fiedPotatoDiggers AS (SELECT pd.l_id, pd.latest_yield, pd.lifetime haul,
l.fatigue FROM PotatoDigger pd JOIN Leprechaun 1 ON pd.l_id = 1.1_id
JOIN CANWORKIN ¢ ON L1_id = c.l_id JOIN AvgLifetimeHaul avg ON
pd.lifetime_ haul > avg.avg_lifetime_haul WHERE lfatigue != ‘exhausted’
AND Lfatigue != ‘extreme’ AND c.region_name = ‘Lucky Charm Chasm’)
SELECT * FROM QualifiedPotatoDiggers;

Screenshot of the query being executed (always include all of the SQL
statement):

2 => WITH AvgLifetimeHaul AS (
SELECT AVG(pd.lifetime_haul) AS avg_lifetime_haul
FROM PotatoDigger pd
JOIN Leprechaun 1 ON pd.l_id = 1.1_id
WHERE 1.fatigue != 'exhausted' AND l.fatigue != 'extreme'

QualifiedPotatoDiggers AS (
SELECT pd.1_id, pd.latest_yield, pd.lifetime_haul, l.fatigue
FROM PotatoDigger pd
JOIN Leprechaun 1 ON pd.l_id = l.1_id
JOIN CANWORKIN ¢ ON 1.1_. c.l_id
JOIN AvglLifetimeHaul avg ON pd.lifetime_haul > avg.avg_lifetime_haul
WHERE 1.db2 (cont.) => fatigue != 'exhausted' AND l.fatigue != 'extreme’
AND c.region_name = 'Lucky Charm Chasm'
)
SELECT *
FROM QualifiedPotatoDiggers;db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) =>d
2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) =>

AUL FATIGUE

446389 none
456535 none
155275 none
147989 none
241930 mild

5 record(s) selected.

Query?2
Description of what information the query returns:

WE want to make sure our Farmstands are tended by only the most up-to-date
clerks who will provide the best customer service. So, we want the top half of

current farmstand clerks ordered by the clerks who have most recently gone
through sensitivity training. We don’t want any Clerks who are still in training
either.

The SQL Query in plaintext:

WITH RecentlyTrainedClerks AS (SELECT lc.l_id, lc.first_name, lc.]ast_name,
st.s_date, st.s_time, ROW_NUMBER() OVER (ORDER BY st.s_date DESC,
st.s_time DESC) AS rn FROM Leprechaun lc JOIN SensitivityTraining st
ON lec.s_id = st.s_id JOIN FarmstandClerk fc ON lc.l _id = fc.l id WHERE
le.in_ training = 0), QualifiedClerks AS (SELECT 1_id FROM RecentlyTrained-
Clerks WHERE rn <= (SELECT COUNT (%) / 2 FROM Recently TrainedClerks)
) SELECT rt.l_id, rt.first_name, rt.last_name FROM RecentlyTrainedClerks
rt JOIN QualifiedClerks qc ON rt.l_id = qc.l_id ORDER BY L_ID;

Screenshot of the query being executed (always include all of the SQL
statement):

db2 => WITH RecentlyTrainedClerks AS (
SELECT 1lc.l_id, lc.first_name, lc.last_name, st.s_date, st.s_time,
ROW_NUMBER() OVER (ORDER BY st.s_date DESC, st.s_time DESC) AS rn
FROM Leprechaun lc
JOIN SensitivityTraining st ON lc.s_id = st.s_id
JOIN FarmstandClerk fc ON lc.l_id = fc.l_id -- Consider only leprechauns who are clerks
WHERE 1lc.in_training = @ —— Select only leprechauns not in training
)y
QualifiedClerks AS (
SELECT 1_id
FROM RecentlyTrainedClerks
WHERE rn <= (SELECT COUNT(*) / 2 FROM RecentlyTrainedClerks) -- Select top half of clerks
)
SELECT rt.1l_id, rt.first_name, rt.last_name
FROM RecentlyTrainedClerks rt
JOIN QualifiedClerks qc ON rt.l_id = gc.l_id
ORDER BY L_ID;db2 (cont.) => db2 (cont > db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db
2 (cont > db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2
(cont.) =>

(L FIRST_NAME LAST_NAME

0'Cloverfield
0'Fairyluck
0'Fable
0'Glimmer
0'Glow
0'Shimmer
0'Glimmer

65 Brendan 0'Wish

66 Darragh 0'Glint

90 Tadhg 0'Sparkle

91 Cormac 0'Glimpse

11 record(s) selected.

Query3
Description of what information the query returns:

We want to reward our most valuable customer(s)! We want to find the person
or persons who has spent the most money on orders, as well as the person with
the most orders.

The SQL Query in plaintext:

WITH TotalSpent AS (SELECT c_id, SUM(cost) AS total spent
FROM Purchased GROUP BY c¢_id), TotalOrders AS (SELECT
c_id, COUNT(*) AS total orders FROM Purchased GROUP BY
c_id) SELECT cl.c_id AS max_spent_ customer id, cl.first_ name
AS max_spent_first _name, cl.last_ name AS max_ spent_last name,
ts.total _spent AS max_total spent, c2.c_id AS max_orders customer id,
c2.first__name AS max_ orders_first name, c2.last_name AS max_orders_ last_name,
tos.total orders AS max_total orders FROM (SELECT c_id, first_name,
last_name FROM Customer) AS cl1 JOIN TotalSpent ts ON cl.c_id =
ts.c_id JOIN TotalOrders tos ON cl.c_id = tos.c_id JOIN Customer c2 ON
tos.total_orders = (SELECT MAX(total_orders) FROM TotalOrders) ORDER
BY ts.total_spent DESC LIMIT 1;

Screenshot of the query being executed (always include all of the SQL
statement):

Query4
Description of what information the query returns:

We want to make sure our Farmstands are adequitely stocked on golden potatoes.
Thus, we will need our best gold-finding rainbow hunters to go out and hunt
us some new gold. They will be the best available rainbow hunter for the
corresponding region. We don’t want our poor workers to work too hard, or else
the unions will come after us. So, we need to make sure the rainbow hunters who
are the most effective only work in the Region they are qualified in. ### The
SQL Query in plaintext: ‘WITH TopRainbowHunters AS (SELECT rh.l_id,
rh.hit_rate, rhg.region_name, ROW_NUMBER() OVER(PARTITION BY
rhg.region_name ORDER BY rh.hit_rate DESC) AS rn FROM RainbowHunter
rh, rainbowhunting rhg WHERE rh.l_id = rhg.l id),

AverageGoldenPotatoes AS (SELECT AVG(s.golden_stock) AS avg golden_ stock,
n.region_name FROM Stand s JOIN Near n ON s.x_coord = n.x_ coord AND
s.y_coord = n.y_ coord GROUP BY n.region_name),

BelowAverageStands AS (SELECT s.x_coord, s.y_coord, n.region_name

FROM Stand s JOIN Near n ON s.x_coord = n.x_coord AND s.y_ coord
= n.y_coord JOIN AverageGoldenPotatoes agp ON n.region_name =
agp.region_name WHERE s.golden_ stock < agp.avg_golden_ stock),

QualifiedRainbowHunters AS (SELECT trh.l_id, trh.hit_rate, rh.region_name
FROM TopRainbowHunters trh JOIN RainbowHunting rh ON trh.l_id =rh.l_id
WHERE trh.rn = 1)

SELECT qrh.l_id, grh.hit_rate, qrh.region_ name, bas.x_ coord, bas.y_ coord
FROM QualifiedRainbowHunters qrh JOIN BelowAverageStands bas ON
qgrh.region_ name = bas.region_ name;

Screenshot of the query being executed (always include all of the SQL
statement):

Queryb
Description of what information the query returns:

We want to know the rainbows that are the “best.” This means we want
to maximize the gold quantity belonging to that rainbow, minimize the
rotten_ quantity, and we want the rainbow to ideally have many regions
which it can go to. We grab the top third of Rainbows who fit these
criteria ### The SQL Query in plaintext: WITH RainbowScores AS
(SELECT r.r_id, r.region_name, r.golden_quantity, r.rotten__quantity,
COUNT(a.region_name_1) AS num_ outgoing regions, ROW__NUMBER/()
OVER (ORDER BY r.golden_quantity DESC, r.rotten_quantity ASC,
COUNT (a.region_name_ 1) DESC) AS rank FROM Rainbow r LEFT JOIN
AdjacentTo a ON r.region name = a.region_name_1 GROUP BY r.r_id,
r.region_name, r.golden quantity, r.rotten_quantity) SELECT r.r_id,
r.region_ name, r.golden__quantity, r.rotten_ quantity, r.num_ outgoing_ regions
FROM RainbowScores r WHERE rank <= (SELECT CEIL(COUNT(*) / 3.0)

FROM RainbowScores);

Screenshot of the query being executed (always include all of the SQL
statement):

=> WITH RainbowScores AS (

SELECT r.r_id,
r.region_name,
r.golden_quantity,
r.rotten_quantity,
COUNT (a. region_name_1) AS num_outgoing_regions,
ROW_NUMBER() OVER (ORDER BY r.golden_quantity DESC, r.rotten_quantity ASC, COUNT(a.region_name_1) DESC) AS ran

FROM Rainbow r
LEFT JOIN AdjacentTo a ON r.region_name = a.region_name_1
GROUP BY r.r_id, r.region_name, r.golden_quantity, r.rotten_quantity
)
SELECT r.r_id,
db2 (cont.) => r.region_name,
r.golden_quantity,
r.rotten_quantity,
r.num_outgoing_regions
FROM RainbowScores r
WHERE rank <= (SELECT CEIL(COUNT(*) / 3.0) FROM RainbowScores);db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.)
=> db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) db2 (cont.) db2 (cont.) => db2 (cont.) => db2 (cont.)
> db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) =>

R_ID REGION_NAME GOLDEN_QUANTITY ROTTEN_QUANTITY NUM_OUTGOING_REGIONS

Lucky Charm Chasm
Shamrock Shire
5 Lucky Penny Pastures
15 Pot o' Gold Pass
27 Lucky Penny Pastures
17 Pot o' Gold Pass
18 Cloverdale Valley
25 Lucky Charm Chasm
16 Cloverdale Valley
29 Lucky Penny Pastures

10 record(s) selected.

III. SQL Modifications
Mod1

Description of what modification the statement performs:

This statement is updating the fatigue level of leprechauns. If a leprechaun is
currently mildly tired, it becomes not tired. If a leprechaun is currently extremely
tired, it becomes mildly tired. If a leprechaun is not tired, it remains not tired.

The SQL update/delete/insert statement in plaintext:

UPDATE leprechauns SET fatigue = CASE fatigue WHEN ‘mild’ THEN ‘none’
WHEN ‘extreme’ THEN ‘mild’ ELSE ‘none’ END WHERE fatigue IN (‘none’,
‘mild’; ‘extreme’);

Screenshot of the Mod being executed (always include all of the SQL
statement):

db2 => UPDATE leprechaun
SET fatigue = CASE fatigue
WHEN 'mild' THEN 'none'
WHEN 'extreme' THEN 'mild’
ELSE 'none’

END

WHERE fatigue IN ('none', 'mild', 'extreme');db2 (cont.) => db2 (cont.) => db2 (co
nt.) => db2 (cont.) => db2 (cont.) => db2 (cont.) =>

DB20@@@I The SQL command completed successfully.

db2 => |

Mod2

Description of what modification the statement performs:

This modification adds 1.00 to the cost of each purchase made by customers who
placed orders with a golden potato quantity greater than 15.

The SQL update/delete/insert statement in plaintext:

UPDATE Purchased SET cost = cost + 1.00 WHERE c¢_id IN (SELECT c_id
FROM (SELECT Purchased.c_id FROM DeliveryOrder JOIN Purchased ON
DeliveryOrder.c_id = Purchased.c_id WHERE golden_ quantity > 15) AS
HighGoldOrders);

Screenshot of the Mod being executed (always include all of the SQL
statement):

db2 => UPDATE Purchased
SET cost = cost + 1.00
WHERE c_id IN (
SELECT c_id
FROM (
SELECT Purchased.c_id
FROM DeliveryOrder

JOIN Purchased ON DeliveryOrder.c_id = Purchased.c_id
WHERE golden_gquantity > 15
) AS HighGoldOrders

);
db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.)

=> db2 (cont.) => db2 (cont.) => db2 (cont.) => db2 (cont.) => DB20@@@I The SQL comm
and completed successfully.

10

IV. Views

Viewl

Description of what the view represents:

It is essentially selecting Leprechauns (identified by their “1_id”) who have
collected more potatoes over their lifetime than the average potato haul among
all Leprechauns in the dataset. This view provides a filtered perspective on the
dataset, focusing only on those Leprechauns who are particularly proficient at
digging potatoes.

The The CREATE VIEW statement:

The CREATE VIEW statement:

CREATE VIEW GoldDiggers AS SELECT 1_id, lifetime_haul FROM Pota-
toDigger WHERE lifetime_ haul > (SELECT AVG(lifetime_haul) FROM Pota-
toDigger);

Screenshot the statement showing both input and output statement):

db2 => CREATE VIEW GoldDiggers AS
SELECT 1_id, lifetime_haul FROM PotatoDigger
WHERE lifetime_haul > (SELECT AVG(lifetime_haul) FROM PotatoDigger);db2 (cont.) => db2

(cont.) =>
DB200@RI The SQL command completed successfully.
db2 == ||

11

A Screenshot of an SQL query that selects everything from the view
truncated to 5 records):

db2 => SELECT *
FROM GoldDiggers
LIMIT 5;db2 (cont.) => db2 (cont.)

LIFETIME_HAUL

168856
156952
156674
446389
241930

5 record(s) selected.

db2 => |

A Screenshot of when you insert a new, valid record, and result:

db2 => INSERT INTO GoldDiggers (L_ID, LIFETIME_HAUL)

db2 (cont.) => VALUES(1l@0@, 1000000)

db2 (cont.) => ;

DB21@34E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:
SQL@53@N The insert or update value of the FOREIGN KEY
""C5421G28.POTATODIGGER.SQL240221224219710" is not equal to any value of the
parent key of the parent table. SQLSTATE=23503

An Explanation of what the result means and the DB2 manual de-
scription associated with it:

This failed insert operation involved inserting a value into a column that has
a foreign key constraint, but the value being inserted does not exist in the
referenced parent table’s primary key column. This violates referential integrity
because the foreign key value is attempting to reference a non-existent primary
key value.

12

View2
Description of what the view represents:

This view provides a list of leprechauns’ names alongside the cost of the de-
livery orders they are associated with, by joining data from the Leprechaun,
DeliveryOrder, and Purchased tables. ### The CREATE VIEW statement:

CREATE VIEW DeliveryProfits AS SELECT first_ name, last_name, cost
FROM Leprechaun JOIN DeliveryOrder ON Leprechaun.s id = Delivery-
Order.l_id JOIN Purchased ON DeliveryOrder.c_id = Purchased.c_ id;

Screenshot the statement showing both input and output statement):

db2 => CREATE VIEW DeliveryProfits AS
SELECT first_name, last_name, cost FROM
Leprechaun JOIN DeliveryOrder

ON Leprechaun.s_id = DeliveryOrder.1_id

JOIN Purchased

ON DeliveryOrder.c_id = Purchased.c_id;db2 (cont.) => db2 (cont.) => db2 (cont.) =>
db2 (cont.) => db2 (cont.) =>
DB20@@@I The SQL command completed successfully.
db2 => [

A Screenshot of an SQL query that selects everything from the view
truncated to 5 records):

db2 => SELECT * FROM DeliveryProfits LIMIT 5;
FIRST_NAME LAST_NAME

0'Sprite
0'Gleam
0'Shine
Rafferty 0'Shine
Keelan 0'Spark

5 record(s) selected.

db2 => |j

13

A Screenshot of when you insert a new, valid record, and result:

db2 => INSERT INTO DeliveryProfits (first_name, last_name, cost)

db2 (cont.) == VALUES('Jeremy', 'Sparklehan', 2.99)

db2 (cont.) == ;

DB21@34E The command was processed as an SQL statement because it was not a
valid Command Line Processor command. During SQL processing it returned:

SQL@15@N The target fullselect, view, typed table, materialized query table,
range—clustered table, or staging table in the INSERT, DELETE, UPDATE, MERGE,
or TRUNCATE statement is a target for which the requested operation is not
permitted. SQLSTATE=42807

db2 =>]

An Explanation of what the result means and the DB2 manual de-
scription associated with it:

As explained in the DB2 manual, the error was caused by the fact that “The
view definition contains a join, a GROUP BY, or a HAVING clause.” and our
View clearly has a JOIN clause in it. Thus our insert fails.

14

V. Check Constraints
Checkl

Describe what the constraint achieves

The “positive_ gold” constraint ensures that the “RainbowHunter” table only
contains data where both the gold level and hit rate are non-negative values,
and the hit rate does not exceed 1 (or 100%). This helps maintain data integrity
and consistency within the table.

Show the constraint statement :

ALTER TABLE RainbowHunter ADD CONSTRAINT positive_ gold CHECK
(gold_level >= 0 AND hit_rate >= 0 AND hit_ rate <= 1);

A Screenshot of command running on the database:

db2 => ALTER TABLE RainbowHunter
ADD CONSTRAINT positive_gold CHECK (gold_level >= @ AND hit_rate >= @ AND hit_rate <=
1);db2 (cont.) =>

DB20@@0I The SQL command completed successfully.
db2 == ||

Screenshot of the execution trying to insert a record that violates
the constraint, and resulting error:

db2 => INSERT INTO RainbowHunter (1_id, gold_level, hit_rate) VALUES

db2 (cont.) => (101, -1, -1.5);

DB21@34E The command was processed as an SQL statement because it was not a
valid Command Line Processor command. During SQL processing it returned:

SQL@545N The requested operation is not allowed because a row does not
satisfy the check constraint '(CS421G28.RAINBOWHUNTER.POSITIVE_GOLD".
SQLSTATE=23513

db2 => l

Check?2

Describe what the constraint achieves

This constraint guarantees that each adjacency relationship defined in the
“AdjacentTo” table links two distinct regions. It prevents scenarios where a
region is mistakenly considered adjacent to itself, which would not make logical
sense in the context of adjacency between regions.

Show the constraint statement :

ALTER TABLE AdjacentTo ADD CONSTRAINT same_ adjacency CHECK

(region_name_ 1 != region_name_ 2);

15

A Screenshot of command running on the database:

db2 => ALTER TABLE AdjacentTo
ADD CONSTRAINT same_adjacency CHECK (region_name_1l != region_name_2);db2 (cont.) =>

DB20@@@I The SQL command completed successfully.
db2 => ||

Screenshot of the execution trying to insert a record that violates
the constraint, and resulting error:

db2 => INSERT INTO AdjacentTe (region_name_1, region_name_2) VALUES
db2 (cont.) => ('Pot o'' Gold Pass', 'Pot o'' Gold Pass');
DB21@34E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:
SQL@545N The requested operation is not allowed because a row does not
satisfy the check constraint "CS421G28.ADJACENTTO.SAME_ADJACENCY".
SQLSTATE=23513

16

VI. Creativity
REAL DATA SETS:

Description

The Leprechaun table was populated with 100 leprechauns with suitable Irish
names generated by chatGPT, eg. Paddy McShenanigans, Lorcan O’Fiddlesticks,
Liam Leprechaunson, and Lucky O’Charms. Their birthdays were randomly
generated between the years 749-1100 as only the wisest and most experienced
leprechauns can work for Lucky Leprechaun’s rainbow potato business. The
fatigue attribute was generated to be a 70-20-10 split between ‘none’, ‘mild’, and
‘extreme’ and 10% of leprechauns are in training. The Leprechaun entity is re-
lated to the RainbowHunter, PotatoDigger, FarmstandClerk, and PotatoCourier
entities through an ISA relationship and thus the four tables representing these
entities contain a foreign key to the leprechaun table. The SensitivityTraining,
TravellingOnRainbow, and CanWorkIn tables also have a foreign key to the
Leprechaun table. The leprechauns in training have the most recent sensitivity
training dates and none of them are assigned a job.

ADVANCED SQL FEATURES:

Description

For occasions when we need to have the biggest golden potato yield possible, we
need to find not only the Rainbow regions that are rich in golden potatoes, but
also have a high number of workers that can work in those regions. This will be
done using the DENSE_ RANK() OLAP function to rank the records respectively
by their number of golden potatoes and by the number of Leprechauns that can
harvest them. Additionally, using the PERCENTILE_DISC() OLAP function,
we can obtain the desired percentile among all the Rainbow Regions in order to
ultimately identify the regions of the highest grade.

SQL statements

select dense_rank() over (order by NumOfPossibleWorkers desc, golden__quantity
desc) as RankByWorkersAndGold, r_id, Rainbow.region_ name, NumOfPossi-
bleWorkers, golden_ quantity from (select count(*) as NumO{PossibleWorkers,
RainbowRegion.region_name from (RainbowRegion join CanWorkIn on
RainbowRegion.region_name = CanWorkIn.region name) group by Rain-
bowRegion.region_name)as RainbowRegion join Rainbow on RainbowRe-
gion.region_name = Rainbow.region_name where golden_quantity >= (select
distinct percentile_disc(0.8) within group (order by golden_quantity) over () as
top from Rainbow);

17

Screenshots:

COMPLEX ANALYTICAL QUERIES:

Description

Where’s the gold going: We want the top third of all delivery leprechauns, by
Golden Quantity, who are actively traveling on rainbows, and where they are
traveling to based on their current rainbow. This will allow us to live-track where
our most valuable orders are going to, and in the case of a loss or failed delivery,
we can have precise information to give the Leprechaun CIA. Fortunately for
our current staff of orders and delivery leprechauns, nobody who is in the
upper echelon seems to be traveling on a rainbow at the moment... ITS A

CONSPIRACY!!!!

SQL statements

WITH TopGoldenOrders AS (SELECT d_id, 1 id, golden quantity,
ROW_NUMBER() OVER (ORDER BY golden__quantity DESC) AS rn FROM
DeliveryOrder WHERE 1_id IN (SELECT 1_id FROM TravellingOnRainbow)),
TopThird AS (SELECT d_id, 1_id, golden_ quantity FROM TopGoldenOrders
WHERE rn <= (SELECT CEIL(COUNT(*) / 3.0) FROM TopGoldenOrders)
) SELECT t.d_id, t.1_id, tor.r_id AS destination_rainbow, tor.region_name
FROM TopThird t JOIN TravellingOnRainbow tor ON t.l_id = tor.l_id JOIN
AdjacentTo a ON tor.region_ name = a.region_name_ 1 ORDER BY t.d_id;

Screenshots:

18

VIII. Group Paragraph

As a group, we worked together very well. We had 2 different Zoom
meetings to discuss our workload separation, group progess, and load
management. These meetings were easily facilitated by constant and
open communication between all group members. We assigned each
group member sections of the project in equal point proportion and
kept in constant communication to be able to relay the parts one after
another. This made the work fairly easy and straightforward, as it put
little pressure on any one individual. We were easily able to submit
a polished Deliverable before the deadline. This project was made
slightly more challenging by the illness of one group member, however
we were able to overcome through this adversity.Every group member
reviewed and approved the Deliverable before submission.

19

	Group 28
	Owen, Russ, Gabrielle, Marcello
	Pre. Renewed Relational Schema
	Relations
	Entites:
	Weak Entities:
	IS-A Entities:
	Relationships:

	I. Pending Constraints
	Within ``AdjacentTo'' relationship table:
	Within tables describing working Leprechauns:
	Within tables describing Leprechauns' professions:
	Within ``Stocked'' relationship table:
	Within tables describing Leprechauns' use of Rainbows:

	II. SQL Queries
	Query1
	Description of what information the query returns:
	The SQL Query in plaintext:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query2
	Description of what information the query returns:
	The SQL Query in plaintext:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query3
	Description of what information the query returns:
	The SQL Query in plaintext:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query4
	Description of what information the query returns:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query5
	Description of what information the query returns:
	Screenshot of the query being executed (always include all of the SQL statement):

	III. SQL Modifications
	Mod1
	Description of what modification the statement performs:
	The SQL update/delete/insert statement in plaintext:
	Screenshot of the Mod being executed (always include all of the SQL statement):

	Mod2
	Description of what modification the statement performs:
	The SQL update/delete/insert statement in plaintext:
	Screenshot of the Mod being executed (always include all of the SQL statement):

	IV. Views
	View1
	Description of what the view represents:
	The The CREATE VIEW statement:
	Screenshot the statement showing both input and output statement):
	A Screenshot of an SQL query that selects everything from the view truncated to 5 records):
	 A Screenshot of when you insert a new, valid record, and result:
	An Explanation of what the result means and the DB2 manual description associated with it:

	View2
	Description of what the view represents:
	Screenshot the statement showing both input and output statement):
	A Screenshot of an SQL query that selects everything from the view truncated to 5 records):
	 A Screenshot of when you insert a new, valid record, and result:
	An Explanation of what the result means and the DB2 manual description associated with it:

	V. Check Constraints
	Check1
	Describe what the constraint achieves
	 Show the constraint statement :
	 A Screenshot of command running on the database:
	 Screenshot of the execution trying to insert a record that violates the constraint, and resulting error:

	Check2
	Describe what the constraint achieves
	 Show the constraint statement :
	 A Screenshot of command running on the database:
	 Screenshot of the execution trying to insert a record that violates the constraint, and resulting error:

	VI. Creativity
	REAL DATA SETS:
	Description
	ADVANCED SQL FEATURES:
	Description
	SQL statements
	 Screenshots:

	COMPLEX ANALYTICAL QUERIES:
	Description
	SQL statements
	 Screenshots:

	VIII. Group Paragraph
	As a group, we worked together very well. We had 2 different Zoom meetings to discuss our workload separation, group progess, and load management. These meetings were easily facilitated by constant and open communication between all group members. We assigned each group member sections of the project in equal point proportion and kept in constant communication to be able to relay the parts one after another. This made the work fairly easy and straightforward, as it put little pressure on any one individual. We were easily able to submit a polished Deliverable before the deadline. This project was made slightly more challenging by the illness of one group member, however we were able to overcome through this adversity.Every group member reviewed and approved the Deliverable before submission.

