
Group 28

Owen, Russ, Gabrielle, Marcello

Pre. Renewed Relational Schema

Relations
Entites:
Potato(p_id, colour, quality, rotten)

Leprechaun(l_id, in_training, first_name, last_name, birthday, fatigue, s_id) -
s_id is a foreign key referencing the SensitivityTraining entity

RainbowRegion(region_name)

Stand(coordinates, golden_stock, regular_stock, l_id) - l_id is a foreign key
referencing the FarmstandClerk entity

SensitivityTraining(s_id, date, time)

Customer(c_id, credit_card_number, credit_card_expiry, first_name,
last_name)

DeliveryOrder(d_id, regular_quantity, golden_quantity, c_id, l_id) - c_id is a
foreign key referencing the Customer entity - l_id is a foreign key referencing
the PotatoCourier entity

Weak Entities:
Rainbow(r_id, region_name, regular_quantity, golden_quantity, rot-
ten_quantity) - region_name is a foreign key referencing the RainbowRegion
entity

IS-A Entities:
RainbowHunter(l_id, gold_level, hit_rate) - l_id is a foreign key referencing
the Leprechaun entity

PotatoDigger(l_id, latest_yield, lifetime_haul) - l_id is a foreign key referencing
the Leprechaun entity

FarmstandClerk(l_id, potatoes_sold) - l_id is a foreign key referencing the
Leprechaun entity

PotatoCourier(l_id) - l_id is a foreign key referencing the Leprechaun entity

1

Relationships:
RainbowHunting(l_id, r_id, region_name) - l_id is a foreign key referencing
the RainbowHunter entity - r_id is a foreign key referencing the Rainbow entity
- region_name is a foreign key referencing the RainbowRegion entity

PotatoDigging(p_id, l_id) - p_id is a foreign key referencing the Potato entity -
l_id is a foreign key referencing the PotatoDigger entity

TravellingOnRainbow(l_id, r_id, region_name) - l_id is a foreign key referencing
the Leprechaun entity - r_id is a foreign key referencing the Rainbow entity -
region_name is a foreign key referencing the RainbowRegion entity

Purchased(p_id, c_id, cost) - p_id is a foreign key referencing the Potato entity
- c_id is a foreign key referencing the Customer entity

Stocked(p_id, coordinates) - p_id is a foreign key referencing the Potato entity
- coordinates is a foreign key referencing the Stand entity

AdjacentTo(region_name, region_name) - region_name is a foreign key refer-
encing the RainbowRegion entity

Near(r_id, region_name, coordinates) - r_id is a foreign key referencing the
Rainbow entity - region_name is a foreign key referencing the RainbowRegion
entity - coordinates is a foreign key referencing the Stand entity

CanWorkIn(l_id, region_name) - l_id is a foreign key referencing the Leprechaun
entity - region_name is a foreign key referencing the RainbowRegion entity

There are no relations that can be combined without introducing redundancy.

2

I. Pending Constraints
Within “AdjacentTo” relationship table:

Two tuples carrying the same meaning can exist within “AdjecentTo” table
(e.g., (North America, Latin America) and (Latin America, North America) are
different tuples, but has the same meaning). This may lead to some duplicates
in the results of some queries.

Within tables describing working Leprechauns:

Leprechauns who are currently in training or are too tired to work can be erro-
neously added to tables such as “RainbowHunting”, “PotatoDigging”, “Stand”,
and “TravellingOnRainbow”. This requires checking for Leprechauns’ tiredness
attribute and “in_training” flag.

Within tables describing Leprechauns’ professions:

Leprechauns can be added to two or more profession tables (e.g., “Rain-
bowHunter”, “PotatoDigger”). This requires checking for duplicate Leprechaun
IDs across multiple tables — possibly upon assigning a job to a Leprechaun

— which is impossible to do in the database code. Also, if ever a Leprechaun
were to be assigned to two or more professions, that Leprechaun can undergo
those jobs at the very same time, and consequently/possibly work in different
locations.

Within “Stocked” relationship table:

There are two ways to describe, in the database server, a single potato that is
not stocked anywhere: (1) either that potato is not described anywhere in the
“Stocked” relationship table, (2) or that potato has a record in the “Stocked”
table, but does not refer to any “Stand” entity. Enforcing a “Stocked” tuple to
be created alongside the creation of a “Potato” record brings more consistency.

Within tables describing Leprechauns’ use of Rainbows:

There are no database-level constraints on who can use a certain, busy Rainbow
or how many workers can use it. Certain groups of working Leprechauns should
prevent some other Leprechauns with different jobs to use the same Rainbow
(e.g., Potato diggers and couriers cannot use a rainbow simultaneously). Infinitely
many Leprechaun workers can also be added to a single Rainbow at the database
level.

3

II. SQL Queries
Query1
Description of what information the query returns:

This Query will select all the Potato Diggers who are not anywhere beyond mild
fatigue, so they can work in the grueling conditions in Lucky Charm Chasm.
They must of course, be allowed to work in Lucky Charm Chasm as well. In
addition we want only the most productive Potato Diggers, so we will select only
The diggers who have a higher-than-average lifetime haul.

The SQL Query in plaintext:

WITH AvgLifetimeHaul AS (SELECT AVG(pd.lifetime_haul) AS
avg_lifetime_haul FROM PotatoDigger pd JOIN Leprechaun l ON pd.l_id =
l.l_id WHERE l.fatigue != ‘exhausted’ AND l.fatigue != ‘extreme’), Quali-
fiedPotatoDiggers AS (SELECT pd.l_id, pd.latest_yield, pd.lifetime_haul,
l.fatigue FROM PotatoDigger pd JOIN Leprechaun l ON pd.l_id = l.l_id
JOIN CANWORKIN c ON l.l_id = c.l_id JOIN AvgLifetimeHaul avg ON
pd.lifetime_haul > avg.avg_lifetime_haul WHERE l.fatigue != ‘exhausted’
AND l.fatigue != ‘extreme’ AND c.region_name = ‘Lucky Charm Chasm’)
SELECT * FROM QualifiedPotatoDiggers;

Screenshot of the query being executed (always include all of the SQL
statement):

Query2
Description of what information the query returns:

WE want to make sure our Farmstands are tended by only the most up-to-date
clerks who will provide the best customer service. So, we want the top half of

4

current farmstand clerks ordered by the clerks who have most recently gone
through sensitivity training. We don’t want any Clerks who are still in training
either.

The SQL Query in plaintext:

WITH RecentlyTrainedClerks AS (SELECT lc.l_id, lc.first_name, lc.last_name,
st.s_date, st.s_time, ROW_NUMBER() OVER (ORDER BY st.s_date DESC,
st.s_time DESC) AS rn FROM Leprechaun lc JOIN SensitivityTraining st
ON lc.s_id = st.s_id JOIN FarmstandClerk fc ON lc.l_id = fc.l_id WHERE
lc.in_training = 0), QualifiedClerks AS (SELECT l_id FROM RecentlyTrained-
Clerks WHERE rn <= (SELECT COUNT(*) / 2 FROM RecentlyTrainedClerks)
) SELECT rt.l_id, rt.first_name, rt.last_name FROM RecentlyTrainedClerks
rt JOIN QualifiedClerks qc ON rt.l_id = qc.l_id ORDER BY L_ID;

Screenshot of the query being executed (always include all of the SQL
statement):

Query3
Description of what information the query returns:

We want to reward our most valuable customer(s)! We want to find the person
or persons who has spent the most money on orders, as well as the person with
the most orders.

5

The SQL Query in plaintext:

WITH TotalSpent AS (SELECT c_id, SUM(cost) AS total_spent
FROM Purchased GROUP BY c_id), TotalOrders AS (SELECT
c_id, COUNT(*) AS total_orders FROM Purchased GROUP BY
c_id) SELECT c1.c_id AS max_spent_customer_id, c1.first_name
AS max_spent_first_name, c1.last_name AS max_spent_last_name,
ts.total_spent AS max_total_spent, c2.c_id AS max_orders_customer_id,
c2.first_name AS max_orders_first_name, c2.last_name AS max_orders_last_name,
tos.total_orders AS max_total_orders FROM (SELECT c_id, first_name,
last_name FROM Customer) AS c1 JOIN TotalSpent ts ON c1.c_id =
ts.c_id JOIN TotalOrders tos ON c1.c_id = tos.c_id JOIN Customer c2 ON
tos.total_orders = (SELECT MAX(total_orders) FROM TotalOrders) ORDER
BY ts.total_spent DESC LIMIT 1;

Screenshot of the query being executed (always include all of the SQL
statement):

Query4
Description of what information the query returns:

We want to make sure our Farmstands are adequitely stocked on golden potatoes.
Thus, we will need our best gold-finding rainbow hunters to go out and hunt
us some new gold. They will be the best available rainbow hunter for the
corresponding region. We don’t want our poor workers to work too hard, or else
the unions will come after us. So, we need to make sure the rainbow hunters who
are the most effective only work in the Region they are qualified in. ### The
SQL Query in plaintext: ‘WITH TopRainbowHunters AS (SELECT rh.l_id,
rh.hit_rate, rhg.region_name, ROW_NUMBER() OVER(PARTITION BY
rhg.region_name ORDER BY rh.hit_rate DESC) AS rn FROM RainbowHunter
rh, rainbowhunting rhg WHERE rh.l_id = rhg.l_id),

AverageGoldenPotatoes AS (SELECT AVG(s.golden_stock) AS avg_golden_stock,
n.region_name FROM Stand s JOIN Near n ON s.x_coord = n.x_coord AND
s.y_coord = n.y_coord GROUP BY n.region_name),

BelowAverageStands AS (SELECT s.x_coord, s.y_coord, n.region_name

6

FROM Stand s JOIN Near n ON s.x_coord = n.x_coord AND s.y_coord
= n.y_coord JOIN AverageGoldenPotatoes agp ON n.region_name =
agp.region_name WHERE s.golden_stock < agp.avg_golden_stock),

QualifiedRainbowHunters AS (SELECT trh.l_id, trh.hit_rate, rh.region_name
FROM TopRainbowHunters trh JOIN RainbowHunting rh ON trh.l_id = rh.l_id
WHERE trh.rn = 1)

SELECT qrh.l_id, qrh.hit_rate, qrh.region_name, bas.x_coord, bas.y_coord
FROM QualifiedRainbowHunters qrh JOIN BelowAverageStands bas ON
qrh.region_name = bas.region_name; ‘

Screenshot of the query being executed (always include all of the SQL
statement):

Query5
Description of what information the query returns:

We want to know the rainbows that are the “best.” This means we want
to maximize the gold quantity belonging to that rainbow, minimize the
rotten_quantity, and we want the rainbow to ideally have many regions
which it can go to. We grab the top third of Rainbows who fit these
criteria ### The SQL Query in plaintext: WITH RainbowScores AS
(SELECT r.r_id, r.region_name, r.golden_quantity, r.rotten_quantity,
COUNT(a.region_name_1) AS num_outgoing_regions, ROW_NUMBER()
OVER (ORDER BY r.golden_quantity DESC, r.rotten_quantity ASC,
COUNT(a.region_name_1) DESC) AS rank FROM Rainbow r LEFT JOIN
AdjacentTo a ON r.region_name = a.region_name_1 GROUP BY r.r_id,
r.region_name, r.golden_quantity, r.rotten_quantity) SELECT r.r_id,
r.region_name, r.golden_quantity, r.rotten_quantity, r.num_outgoing_regions
FROM RainbowScores r WHERE rank <= (SELECT CEIL(COUNT(*) / 3.0)

7

FROM RainbowScores);

Screenshot of the query being executed (always include all of the SQL
statement):

8

III. SQL Modifications
Mod1
Description of what modification the statement performs:

This statement is updating the fatigue level of leprechauns. If a leprechaun is
currently mildly tired, it becomes not tired. If a leprechaun is currently extremely
tired, it becomes mildly tired. If a leprechaun is not tired, it remains not tired.

The SQL update/delete/insert statement in plaintext:

UPDATE leprechauns SET fatigue = CASE fatigue WHEN ‘mild’ THEN ‘none’
WHEN ‘extreme’ THEN ‘mild’ ELSE ‘none’ END WHERE fatigue IN (‘none’,
‘mild’, ‘extreme’);

Screenshot of the Mod being executed (always include all of the SQL
statement):

Mod2
Description of what modification the statement performs:

This modification adds 1.00 to the cost of each purchase made by customers who
placed orders with a golden potato quantity greater than 15.

The SQL update/delete/insert statement in plaintext:

UPDATE Purchased SET cost = cost + 1.00 WHERE c_id IN (SELECT c_id
FROM (SELECT Purchased.c_id FROM DeliveryOrder JOIN Purchased ON
DeliveryOrder.c_id = Purchased.c_id WHERE golden_quantity > 15) AS
HighGoldOrders);

9

Screenshot of the Mod being executed (always include all of the SQL
statement):

10

IV. Views
View1
Description of what the view represents:

It is essentially selecting Leprechauns (identified by their “l_id”) who have
collected more potatoes over their lifetime than the average potato haul among
all Leprechauns in the dataset. This view provides a filtered perspective on the
dataset, focusing only on those Leprechauns who are particularly proficient at
digging potatoes.

The The CREATE VIEW statement:

The CREATE VIEW statement:

CREATE VIEW GoldDiggers AS SELECT l_id, lifetime_haul FROM Pota-
toDigger WHERE lifetime_haul > (SELECT AVG(lifetime_haul) FROM Pota-
toDigger);

Screenshot the statement showing both input and output statement):

11

A Screenshot of an SQL query that selects everything from the view
truncated to 5 records):

A Screenshot of when you insert a new, valid record, and result:

An Explanation of what the result means and the DB2 manual de-
scription associated with it:

This failed insert operation involved inserting a value into a column that has
a foreign key constraint, but the value being inserted does not exist in the
referenced parent table’s primary key column. This violates referential integrity
because the foreign key value is attempting to reference a non-existent primary
key value.

12

View2
Description of what the view represents:

This view provides a list of leprechauns’ names alongside the cost of the de-
livery orders they are associated with, by joining data from the Leprechaun,
DeliveryOrder, and Purchased tables. ### The CREATE VIEW statement:

CREATE VIEW DeliveryProfits AS SELECT first_name, last_name, cost
FROM Leprechaun JOIN DeliveryOrder ON Leprechaun.s_id = Delivery-
Order.l_id JOIN Purchased ON DeliveryOrder.c_id = Purchased.c_id;

Screenshot the statement showing both input and output statement):

A Screenshot of an SQL query that selects everything from the view
truncated to 5 records):

13

A Screenshot of when you insert a new, valid record, and result:

An Explanation of what the result means and the DB2 manual de-
scription associated with it:

As explained in the DB2 manual, the error was caused by the fact that “The
view definition contains a join, a GROUP BY, or a HAVING clause.” and our
View clearly has a JOIN clause in it. Thus our insert fails.

14

V. Check Constraints
Check1
Describe what the constraint achieves

The “positive_gold” constraint ensures that the “RainbowHunter” table only
contains data where both the gold level and hit rate are non-negative values,
and the hit rate does not exceed 1 (or 100%). This helps maintain data integrity
and consistency within the table.

Show the constraint statement :

ALTER TABLE RainbowHunter ADD CONSTRAINT positive_gold CHECK
(gold_level >= 0 AND hit_rate >= 0 AND hit_rate <= 1);

A Screenshot of command running on the database:

Screenshot of the execution trying to insert a record that violates
the constraint, and resulting error:

Check2
Describe what the constraint achieves

This constraint guarantees that each adjacency relationship defined in the
“AdjacentTo” table links two distinct regions. It prevents scenarios where a
region is mistakenly considered adjacent to itself, which would not make logical
sense in the context of adjacency between regions.

Show the constraint statement :

ALTER TABLE AdjacentTo ADD CONSTRAINT same_adjacency CHECK
(region_name_1 != region_name_2);

15

A Screenshot of command running on the database:

Screenshot of the execution trying to insert a record that violates
the constraint, and resulting error:

16

VI. Creativity
REAL DATA SETS:
Description
The Leprechaun table was populated with 100 leprechauns with suitable Irish
names generated by chatGPT, eg. Paddy McShenanigans, Lorcan O’Fiddlesticks,
Liam Leprechaunson, and Lucky O’Charms. Their birthdays were randomly
generated between the years 749-1100 as only the wisest and most experienced
leprechauns can work for Lucky Leprechaun’s rainbow potato business. The
fatigue attribute was generated to be a 70-20-10 split between ‘none’, ‘mild’, and
‘extreme’ and 10% of leprechauns are in training. The Leprechaun entity is re-
lated to the RainbowHunter, PotatoDigger, FarmstandClerk, and PotatoCourier
entities through an ISA relationship and thus the four tables representing these
entities contain a foreign key to the leprechaun table. The SensitivityTraining,
TravellingOnRainbow, and CanWorkIn tables also have a foreign key to the
Leprechaun table. The leprechauns in training have the most recent sensitivity
training dates and none of them are assigned a job.

ADVANCED SQL FEATURES:
Description
For occasions when we need to have the biggest golden potato yield possible, we
need to find not only the Rainbow regions that are rich in golden potatoes, but
also have a high number of workers that can work in those regions. This will be
done using the DENSE_RANK() OLAP function to rank the records respectively
by their number of golden potatoes and by the number of Leprechauns that can
harvest them. Additionally, using the PERCENTILE_DISC() OLAP function,
we can obtain the desired percentile among all the Rainbow Regions in order to
ultimately identify the regions of the highest grade.

SQL statements
select dense_rank() over (order by NumOfPossibleWorkers desc, golden_quantity
desc) as RankByWorkersAndGold, r_id, Rainbow.region_name, NumOfPossi-
bleWorkers, golden_quantity from (select count(*) as NumOfPossibleWorkers,
RainbowRegion.region_name from (RainbowRegion join CanWorkIn on
RainbowRegion.region_name = CanWorkIn.region_name) group by Rain-
bowRegion.region_name)as RainbowRegion join Rainbow on RainbowRe-
gion.region_name = Rainbow.region_name where golden_quantity >= (select
distinct percentile_disc(0.8) within group (order by golden_quantity) over () as
top from Rainbow);

17

Screenshots:

COMPLEX ANALYTICAL QUERIES:
Description
Where’s the gold going: We want the top third of all delivery leprechauns, by
Golden Quantity, who are actively traveling on rainbows, and where they are
traveling to based on their current rainbow. This will allow us to live-track where
our most valuable orders are going to, and in the case of a loss or failed delivery,
we can have precise information to give the Leprechaun CIA. Fortunately for
our current staff of orders and delivery leprechauns, nobody who is in the
upper echelon seems to be traveling on a rainbow at the moment. . . ITS A
CONSPIRACY!!!!

SQL statements
WITH TopGoldenOrders AS (SELECT d_id, l_id, golden_quantity,
ROW_NUMBER() OVER (ORDER BY golden_quantity DESC) AS rn FROM
DeliveryOrder WHERE l_id IN (SELECT l_id FROM TravellingOnRainbow)),
TopThird AS (SELECT d_id, l_id, golden_quantity FROM TopGoldenOrders
WHERE rn <= (SELECT CEIL(COUNT(*) / 3.0) FROM TopGoldenOrders)
) SELECT t.d_id, t.l_id, tor.r_id AS destination_rainbow, tor.region_name
FROM TopThird t JOIN TravellingOnRainbow tor ON t.l_id = tor.l_id JOIN
AdjacentTo a ON tor.region_name = a.region_name_1 ORDER BY t.d_id;

Screenshots:

18

VIII. Group Paragraph
As a group, we worked together very well. We had 2 different Zoom
meetings to discuss our workload separation, group progess, and load
management. These meetings were easily facilitated by constant and
open communication between all group members. We assigned each
group member sections of the project in equal point proportion and
kept in constant communication to be able to relay the parts one after
another. This made the work fairly easy and straightforward, as it put
little pressure on any one individual. We were easily able to submit
a polished Deliverable before the deadline. This project was made
slightly more challenging by the illness of one group member, however
we were able to overcome through this adversity.Every group member
reviewed and approved the Deliverable before submission.

19

	Group 28
	Owen, Russ, Gabrielle, Marcello
	Pre. Renewed Relational Schema
	Relations
	Entites:
	Weak Entities:
	IS-A Entities:
	Relationships:

	I. Pending Constraints
	Within ``AdjacentTo'' relationship table:
	Within tables describing working Leprechauns:
	Within tables describing Leprechauns' professions:
	Within ``Stocked'' relationship table:
	Within tables describing Leprechauns' use of Rainbows:

	II. SQL Queries
	Query1
	Description of what information the query returns:
	The SQL Query in plaintext:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query2
	Description of what information the query returns:
	The SQL Query in plaintext:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query3
	Description of what information the query returns:
	The SQL Query in plaintext:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query4
	Description of what information the query returns:
	Screenshot of the query being executed (always include all of the SQL statement):

	Query5
	Description of what information the query returns:
	Screenshot of the query being executed (always include all of the SQL statement):

	III. SQL Modifications
	Mod1
	Description of what modification the statement performs:
	The SQL update/delete/insert statement in plaintext:
	Screenshot of the Mod being executed (always include all of the SQL statement):

	Mod2
	Description of what modification the statement performs:
	The SQL update/delete/insert statement in plaintext:
	Screenshot of the Mod being executed (always include all of the SQL statement):

	IV. Views
	View1
	Description of what the view represents:
	The The CREATE VIEW statement:
	Screenshot the statement showing both input and output statement):
	A Screenshot of an SQL query that selects everything from the view truncated to 5 records):
	 A Screenshot of when you insert a new, valid record, and result:
	An Explanation of what the result means and the DB2 manual description associated with it:

	View2
	Description of what the view represents:
	Screenshot the statement showing both input and output statement):
	A Screenshot of an SQL query that selects everything from the view truncated to 5 records):
	 A Screenshot of when you insert a new, valid record, and result:
	An Explanation of what the result means and the DB2 manual description associated with it:

	V. Check Constraints
	Check1
	Describe what the constraint achieves
	 Show the constraint statement :
	 A Screenshot of command running on the database:
	 Screenshot of the execution trying to insert a record that violates the constraint, and resulting error:

	Check2
	Describe what the constraint achieves
	 Show the constraint statement :
	 A Screenshot of command running on the database:
	 Screenshot of the execution trying to insert a record that violates the constraint, and resulting error:

	VI. Creativity
	REAL DATA SETS:
	Description
	ADVANCED SQL FEATURES:
	Description
	SQL statements
	 Screenshots:

	COMPLEX ANALYTICAL QUERIES:
	Description
	SQL statements
	 Screenshots:

	VIII. Group Paragraph
	As a group, we worked together very well. We had 2 different Zoom meetings to discuss our workload separation, group progess, and load management. These meetings were easily facilitated by constant and open communication between all group members. We assigned each group member sections of the project in equal point proportion and kept in constant communication to be able to relay the parts one after another. This made the work fairly easy and straightforward, as it put little pressure on any one individual. We were easily able to submit a polished Deliverable before the deadline. This project was made slightly more challenging by the illness of one group member, however we were able to overcome through this adversity.Every group member reviewed and approved the Deliverable before submission.

